Anti-Human VEGF Repebody Effectively Suppresses Choroidal Neovascularization and Vascular Leakage.

نویسندگان

  • Da-Eun Hwang
  • Jeong-Hyun Ryou
  • Jong Rok Oh
  • Jung Woo Han
  • Tae Kwann Park
  • Hak-Sung Kim
چکیده

Age-related macular degeneration (AMD) is the leading cause of vision loss and blindness among people over the age of 60. Vascular endothelial growth factor (VEGF) plays a major role in pathological angiogenesis in AMD. Herein, we present the development of an anti- human VEGF repebody, which is a small-sized protein binder consisting of leucine-rich repeat (LRR) modules. The anti-VEGF repebody selected through a phage-display was shown to have a high affinity and specificity for human VEGF. We demonstrate that this repebody effectively inhibits in vitro angiogenic cellular processes, such as proliferation and migration, by blocking the VEGF-mediated signaling pathway. The repebody was also shown to have a strong suppression effect on choroidal neovascularization (CNV) and vascular leakage in vivo. Our results indicate that the anti-VEGF repebody has a therapeutic potential for treating neovascular AMD as well as other VEGF-involved diseases including diabetic retinopathy and metastatic cancers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attenuation of Choroidal Neovascularization by Histone Deacetylase Inhibitor

Choroidal neovascularization (CNV) is a blinding complication of age-related macular degeneration that manifests as the growth of immature choroidal blood vessels through Bruch's membrane, where they can leak fluid or hemorrhage under the retina. Here, we demonstrate that the histone deacetylase inhibitor (HDACi) trichostatin A (TSA) can down-regulate the pro-angiogenic hypoxia-inducible factor...

متن کامل

EGHB010, a Standardized Extract of Paeoniae Radix and Glycyrrhizae Radix, Inhibits VEGF-Induced Tube Formation In Vitro and Retinal Vascular Leakage and Choroidal Neovascularization In Vivo

EGHB010 is a hot water extract of the rhizome mixture of Paeonia lactiflora Pallas and Glycyrrhiza uralensis Fisch. Choroidal neovascularization (CNV) and vascular leakage are the common pathophysiologies of age-related macular degeneration. In this study, we aimed to evaluate the effect of EGHB010 on retinal vascular leakage and laser-induced CNV in a rat model. Vascular endothelial growth fac...

متن کامل

Recombinant anti-vascular endothelial growth factor fusion protein efficiently suppresses choridal neovasularization in monkeys

PURPOSE KH902 is a fusion protein which combines ligand binding elements taken from the extracellular domains of vascular endothelial growth factor (VEGF) receptors 1 and 2 and the Fc portion of IgG1. This study is designed to examine the inhibitory effect of KH902 in the choroidal neovascularization (CNV) monkey model. METHODS The binding affinity with VEGF was measured by using the human VE...

متن کامل

Introduction, mechanism of action and rationale for anti-vascular endothelial growth factor drugs in age-related macular degeneration

Recent developments may provide an opportunity to improve outcome in individuals who develop neovascular age-related macular degeneration (ARMD). Several therapies have been introduced that show promise for halting the progression of this disorder. However, data from controlled clinical trials to test the relative efficacy of different management strategies across the subtypes of disease remain...

متن کامل

Swept-source optical coherence tomography angiography for choroidal neovascularization after bevacizumab and photodynamic therapy

Purpose To report the swept-source optical coherence tomography angiography (SS-OCTA) findings after bevacizumab anti-vascular endothelial growth factor (anti-VEGF) and full-fluence photodynamic therapy (PDT) for choroidal neovascularization. Design Case report. Methods An 87-year-old, Chinese male presented with a shadow and decreased vision to 20/160 in his left eye (OS). Clinical examina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PloS one

دوره 11 3  شماره 

صفحات  -

تاریخ انتشار 2016